
Supplemental data

GimmeMotifs: a de novo motif prediction pipeline for

ChIP-sequencing experiments
Simon J. van Heeringen1,∗, Gert Jan C. Veenstra1

1 Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen

Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands

∗ E-mail: s.vanheeringen@ncmls.ru.nl

Supplemental Methods

Example output

Examples of GimmeMotifs results and output files are included for four different human transcription

factor ChIP-seq datasets: NRSF, STAT1, CTCF (Jothi et al., 2008) and p63 Kouwenhoven et al. (2010).

GimmeMotifs was run with the ’large’ analysis setting and default parameters. For the datasets from

Jothi et al. the same amount of sequences were used as in their analyses, to enable comparison of the

results.

Motif programs and parameters

Currently BioProspector (Liu et al., 2001), GADEM (Li, 2009), Improbizer (Ao et al., 2004), MDmodule

(Liu et al., 2002), MEME (Bailey et al., 2009), MoAn (Valen et al., 2009), MotifSampler (Thijs et al., 2001),

trawler (Ettwiller et al., 2007) and Weeder (Pavesi et al., 2004) are supported.

Except for the width, which is varied according to the GimmeMotifs analysis parameter, mostly

default settings are used for each program. Single- or double-stranded analysis is specified, if possible,

according to GimmeMotifs settings. If a background file is required or recommended then a

background file is generated based on the input sequences using the matched genomic method (see

below). This background file is used for Improbizer, MoAn and BioProspector.
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Matched genomic background

For all peaks/sequences the closest transcription start site (TSS) of a gene is determined. For each

sequence in the input, multiple sequences are selected randomly from the genome (default 10), on the

same chromosome if possible, with a similar distance to the TSS of a gene. In this manner the

distribution of the background sequences with respect to gene TSS’s will be similar to the input

sequences. This background set is optional for less well-annotated genomes, as it is dependent on an

accurate gene annotation.

Clustering

All significant motifs are clustered using an iterative procedure. Pairwise comparisons are performed

for all motifs using the WIC score. The two most similar motifs are merged, and an average motif is

computed. The average column frequencies are based on the weighted column frequencies of the two

individual PFMs. Therefore, a motif with a large amount of occurences has a larger influence on the

new averaged motif. The pairwise comparison scores of the new average motif to all other motifs are

calculated, and the two most similar motifs are again merged. This procedure is repeated iteratively

until the best scoring alignment does not reach a predefined threshold. By default this threshold is a

WIC p-value of ≤ 0.05. This is an empirical p-value which is calculated based on the maximum WIC

score and the length of the motif using the method of Sandelin and Wasserman, based on simulated

PFMs (Sandelin and Wasserman, 2004). 10,000 random PFMs were generated using the JASPAR

website (http://jaspar.cgb.ki.se/).

Statistics

The statistics (enrichment, hypergeometric p-values, ROC and MNCP) are calculated by comparing the

validation set (sequences not used for motif prediction) and a background set of sequences.

GimmeMotifs uses two different backgrounds by default. One is a set of randomly generated

sequences. A 1st order Hidden Markov Model is trained on the input data and used to generate

sequences with similar dinucleotide frequencies. Additionally, GimmeMotifs randomly selects

genomic sequences, taking into account the position of the peaks relative to the transcription start site

(TSS) of genes. For example, if half of the input sequences are located in the proximal promoter, half of
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the background set will correspondingly be selected from proximal promoter regions. All p-values are

corrected by Benjamini-Hochberg multiple testing correction where applicable.

Additional Tools

The prediction of an accurate transcription factor binding motif is often one of the first steps in

ChIP-seq data analysis. However, once a motif has been determined, this predicted motif often needs

to be used to evaluate other datasets or specific subsets of the dataset. GimmeMotifs includes several

command-line tools to facilitate these typical analyses. For example, the weight matrix predicted in the

pipeline can be used to scan sequences with the predicted motif using an optimized motif-specific

cutoff. All the steps included in the pipeline are also available as separate scripts, which can perform

tasks such as conversion of a BED file with genomic coordinates to a FASTA file with sequences, ROC

and MNCP evaluation, generation of background sequences and clustering of motifs.

Benchmarks

Benchmark datasets were retrieved from the publications of Chen et al. (2008) (mouse: Esrrb, Nanog,

Oct4, Sox2, CTCF, E2f1, Smad1, Tcfcp2l1, Zfx, Klf4, c-Myc, n-Myc and STAT3 ) and Valouev et al. (2008);

Jothi et al. (2008) (human: SRF, GABP, NRSF, CTCF and STAT1). For each dataset 3000 peaks of length

200 were randomly chosen from the total set of peaks. GimmeMotifs was run with default parameters,

with the analysis set to ’xl’. With these settings 20% of the peaks (600 in total) were used for prediction,

and 2400 were used for validation. Of the prediction set, only the first 300 peaks (because of

performance reasons) were submitted to the web interface of W-ChipMotifs (Jin et al., 2009) and SCOPE

(Carlson et al., 2007) with default settings. All statistics (ROC AUC, MNCP) were calculated using the

2400 sequences not used for motif prediction.
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Supplemental Tables

Table S1. Benchmark datasets: ROC AUC

GimmeMotifs W-ChIPmotifs SCOPE
Random Genomic Mean Random Genomic Mean Random Genomic Mean

Mouse
CTCF 0.964 0.963 0.964 0.963 0.961 0.962 0.516 0.556 0.536
E2f1 0.646 0.774 0.710 0.666 0.759 0.713 0.561 0.731 0.646
Esrrb 0.911 0.922 0.917 0.912 0.923 0.917 0.559 0.691 0.625
Klf4 0.890 0.903 0.896 0.890 0.893 0.892 0.723 0.786 0.754

Nanog 0.750 0.702 0.726 0.750 0.687 0.719 0.600 0.579 0.590
Oct4 0.740 0.692 0.716 0.736 0.686 0.711 0.594 0.601 0.598

STAT3 0.762 0.774 0.768 0.759 0.775 0.767 0.596 0.702 0.649
Smad1 0.723 0.681 0.702 0.724 0.677 0.701 0.592 0.588 0.590
Sox2 0.867 0.838 0.852 0.868 0.829 0.848 0.628 0.605 0.616

Tcfcp2l1 0.892 0.924 0.908 0.885 0.906 0.896 0.558 0.524 0.541
Zfx 0.711 0.892 0.802 0.666 0.885 0.775 0.605 0.661 0.633

c-Myc 0.767 0.875 0.821 0.740 0.885 0.813 0.632 0.741 0.687
n-Myc 0.728 0.860 0.794 0.672 0.861 0.766 0.643 0.734 0.688

Human
CTCF 0.926 0.942 0.934 0.926 0.943 0.934 0.514 0.561 0.537
GABP 0.918 0.923 0.920 0.915 0.913 0.914 0.649 0.629 0.639
NRSF 0.906 0.936 0.921 0.903 0.922 0.913 0.540 0.534 0.537
SRF 0.701 0.720 0.711 0.700 0.724 0.712 0.568 0.679 0.624

STAT1 0.882 0.888 0.885 0.880 0.887 0.884 0.516 0.559 0.538
Median 0.816 0.845 0.830 0.809 0.840 0.824 0.588 0.637 0.613

Shown is the ROC AUC of the best performing motif for GimmeMotifs, W-ChipMotifs and SCOPE for
each benchmark dataset. The ROC AUC is calculated for two different background datasets (random
and matched genomic) and the mean ROC AUC is calculated across the two background sets.
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Table S2. Benchmark datasets: MNCP

GimmeMotifs W-ChIPmotifs SCOPE
Random Genomic Mean Random Genomic Mean Random Genomic Mean

Mouse
CTCF 9.575 8.385 8.980 9.584 8.327 8.955 1.141 1.076 1.109
E2f1 2.278 2.527 2.403 2.408 2.616 2.512 2.215 1.481 1.848
Esrrb 7.439 7.087 7.263 7.445 7.097 7.271 1.861 1.458 1.659
Klf4 6.056 4.879 5.468 6.006 4.838 5.422 3.201 3.153 3.177

Nanog 4.311 3.396 3.854 3.773 2.739 3.256 1.259 1.569 1.414
Oct4 6.243 5.133 5.688 6.239 5.124 5.682 1.400 1.789 1.594

STAT3 4.157 4.271 4.214 3.944 3.980 3.962 1.889 2.162 2.025
Smad1 4.104 3.149 3.627 3.933 2.877 3.405 1.413 1.533 1.473
Sox2 5.891 5.005 5.448 5.888 4.979 5.433 1.622 1.830 1.726

Tcfcp2l1 6.021 7.045 6.533 5.796 6.310 6.053 1.080 1.359 1.220
Zfx 2.340 4.787 3.564 2.492 4.549 3.520 1.480 1.531 1.506

c-Myc 3.743 5.112 4.427 3.208 5.431 4.319 2.249 1.744 1.997
n-Myc 3.078 4.400 3.739 2.706 4.131 3.418 2.129 1.803 1.966

Human
CTCF 8.742 8.727 8.735 8.715 8.700 8.707 1.193 1.087 1.140
GABP 6.744 5.439 6.091 6.679 5.246 5.962 1.396 1.763 1.580
NRSF 8.870 9.003 8.937 8.874 9.012 8.943 1.077 1.069 1.073
SRF 4.707 4.553 4.630 4.673 4.549 4.611 1.730 1.495 1.612

STAT1 7.351 7.150 7.251 7.357 7.152 7.254 1.180 1.085 1.132
Median 5.647 5.558 5.603 5.540 5.425 5.483 1.640 1.610 1.625

Shown is the MNCP of the best performing motif for GimmeMotifs, W-ChipMotifs and SCOPE for
each benchmark dataset. The MNCP is calculated for two different background datasets (random and
matched genomic) and the mean MNCP is calculated across the two background sets.
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Table S3. Running time of different algorithms

Algorithm Running time to predict motifs (h:mm)
NRSF (5,813) CTCF (26,814) CTCF (top 500)

BioProspector 0:04 0:05 0:01
GADEM 1:03 0:45 0:05

Improbizer 0:12 0:12 0:02
MDmodule 0:01 0:01 0:01

MEME 5:06 5:56 0:04
MoAn 87:11 90:41 9:50

MotifSampler 1:10 1:02 0:04
trawler 0:02 0:08 0:01
Weeder 1:05 1:08 0:08

GimmeMotifs 0:44 2:32 0:05

This table gives an indication of the running time of GimmeMotifs and the individual motif prediction
algorithms. Two datasets from Jothi et al. were used as input for GimmeMotifs: NRSF and CTCF, with
the amount of sequences shown in brackets. In addition we also used a selection of the highest 500
peaks of the CTCF dataset. GimmeMotifs was run with default settings: analysis size ’medium’ and
maximum 1000 sequences used for motif prediction. The running time of each individual algorithm is
shown, as well as the time that GimmeMotifs takes for retrieving sequences, clustering motifs,
determining significance etc. The GimmeMotifs benchmark time does not include the motif prediction,
and will vary with the amount of motifs predicted. The analyses were run on a 12-core 2100Mhz AMD
Opteron machine with 64Gb internal memory. As most of the algorithms are run in parallel (except
GADEM, MoAn and trawler), the time will vary with the number of CPUs available.
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Supplemental Figures
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Figure S1. A flowchart of GimmeMotifs.
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Figure S2. ROC curves for benchmark datasets shown in Supplementary Table 1
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Figure S3. ROC curves for benchmark datasets shown in Supplementary Table 1
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Figure S4. ROC curves for benchmark datasets shown in Supplementary Table 1
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